349 lines
15 KiB
Python
349 lines
15 KiB
Python
import multiprocessing as mp
|
|
from multiprocessing import shared_memory
|
|
import os
|
|
from typing import Callable, Iterable, Optional, Tuple
|
|
|
|
import h5py
|
|
import numpy as np
|
|
|
|
|
|
class BatchGenerator:
|
|
|
|
def __init__(self, data: Iterable, label: Iterable, batch_size: int,
|
|
data_processor: Optional[Callable] = None, label_processor: Optional[Callable] = None,
|
|
pipeline: Optional[Callable] = None,
|
|
prefetch=True, preload=False, num_workers=1, shuffle=True, initial_shuffle=False,
|
|
flip_data=False, save: Optional[str] = None):
|
|
self.batch_size = batch_size
|
|
self.shuffle = shuffle
|
|
self.prefetch = prefetch and not preload
|
|
self.num_workers = num_workers
|
|
self.flip_data = flip_data
|
|
self.pipeline = pipeline
|
|
|
|
if not preload:
|
|
self.data_processor = data_processor
|
|
self.label_processor = label_processor
|
|
self.data = np.asarray(data)
|
|
self.label = np.asarray(label)
|
|
else:
|
|
self.data_processor = None
|
|
self.label_processor = None
|
|
save_path = save
|
|
if save is not None:
|
|
if '.' not in os.path.basename(save_path):
|
|
save_path += '.hdf5'
|
|
if os.path.dirname(save_path) and not os.path.exists(os.path.dirname(save_path)):
|
|
os.makedirs(os.path.dirname(save_path))
|
|
|
|
if save and os.path.exists(save_path):
|
|
with h5py.File(save_path, 'r') as h5_file:
|
|
self.data = np.asarray(h5_file['data'])
|
|
self.label = np.asarray(h5_file['label'])
|
|
else:
|
|
if data_processor:
|
|
self.data = np.asarray([data_processor(entry) for entry in data])
|
|
else:
|
|
self.data = np.asarray(data)
|
|
if label_processor:
|
|
self.label = np.asarray([label_processor(entry) for entry in label])
|
|
else:
|
|
self.label = np.asarray(label)
|
|
if save:
|
|
with h5py.File(save_path, 'w') as h5_file:
|
|
h5_file.create_dataset('data', data=self.data)
|
|
h5_file.create_dataset('label', data=self.label)
|
|
|
|
self.index_list = np.arange(len(self.data))
|
|
if shuffle or initial_shuffle:
|
|
np.random.shuffle(self.index_list)
|
|
self.step_per_epoch = len(self.index_list) // self.batch_size
|
|
self.last_batch_size = len(self.index_list) % self.batch_size
|
|
if self.last_batch_size == 0:
|
|
self.last_batch_size = self.batch_size
|
|
else:
|
|
self.step_per_epoch += 1
|
|
|
|
self.epoch = 0
|
|
self.global_step = 0
|
|
self.step = 0
|
|
|
|
first_data = np.array([data_processor(entry) if data_processor else entry
|
|
for entry in self.data[self.index_list[:batch_size]]])
|
|
first_label = np.array([label_processor(entry) if label_processor else entry
|
|
for entry in self.label[self.index_list[:batch_size]]])
|
|
self.batch_data = first_data
|
|
self.batch_label = first_label
|
|
|
|
self.process_id = 'NA'
|
|
if self.prefetch or self.num_workers > 1:
|
|
self.cache_memory_indices = shared_memory.SharedMemory(create=True, size=self.index_list.nbytes)
|
|
self.cache_indices = np.ndarray(
|
|
self.index_list.shape, dtype=self.index_list.dtype, buffer=self.cache_memory_indices.buf)
|
|
self.cache_indices[:] = self.index_list
|
|
self.cache_memory_data = [
|
|
shared_memory.SharedMemory(create=True, size=first_data.nbytes),
|
|
shared_memory.SharedMemory(create=True, size=first_data.nbytes)]
|
|
self.cache_data = [
|
|
np.ndarray(first_data.shape, dtype=first_data.dtype, buffer=self.cache_memory_data[0].buf),
|
|
np.ndarray(first_data.shape, dtype=first_data.dtype, buffer=self.cache_memory_data[1].buf)]
|
|
self.cache_memory_label = [
|
|
shared_memory.SharedMemory(create=True, size=first_label.nbytes),
|
|
shared_memory.SharedMemory(create=True, size=first_label.nbytes)]
|
|
self.cache_label = [
|
|
np.ndarray(first_label.shape, dtype=first_label.dtype, buffer=self.cache_memory_label[0].buf),
|
|
np.ndarray(first_label.shape, dtype=first_label.dtype, buffer=self.cache_memory_label[1].buf)]
|
|
else:
|
|
self.cache_memory_indices = None
|
|
self.cache_data = [first_data]
|
|
self.cache_label = [first_label]
|
|
|
|
if self.prefetch:
|
|
self.prefetch_pipe_parent, self.prefetch_pipe_child = mp.Pipe()
|
|
self.prefetch_stop = shared_memory.SharedMemory(create=True, size=1)
|
|
self.prefetch_stop.buf[0] = 0
|
|
self.prefetch_skip = shared_memory.SharedMemory(create=True, size=1)
|
|
self.prefetch_skip.buf[0] = 0
|
|
self.prefetch_process = mp.Process(target=self._prefetch_worker)
|
|
self.prefetch_process.start()
|
|
self.num_workers = 0
|
|
self._init_workers()
|
|
self.current_cache = 0
|
|
self.process_id = 'main'
|
|
|
|
def _init_workers(self):
|
|
if self.num_workers > 1:
|
|
self.worker_stop = shared_memory.SharedMemory(create=True, size=1)
|
|
self.worker_stop.buf[0] = 0
|
|
self.worker_pipes = []
|
|
self.worker_processes = []
|
|
for _ in range(self.num_workers):
|
|
self.worker_pipes.append(mp.Pipe())
|
|
for worker_index in range(self.num_workers):
|
|
self.worker_processes.append(mp.Process(target=self._worker, args=(worker_index,)))
|
|
self.worker_processes[-1].start()
|
|
|
|
def __del__(self):
|
|
self.release()
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, _exc_type, _exc_value, _traceback):
|
|
self.release()
|
|
|
|
def release(self):
|
|
if self.num_workers > 1:
|
|
self.worker_stop.buf[0] = 1
|
|
for worker, (pipe, _) in zip(self.worker_processes, self.worker_pipes):
|
|
pipe.send([-1, 0, 0, 0])
|
|
worker.join()
|
|
|
|
self.worker_stop.close()
|
|
self.worker_stop.unlink()
|
|
self.num_workers = 0 # Avoids double release
|
|
|
|
if self.prefetch:
|
|
self.prefetch_stop.buf[0] = 1
|
|
self.prefetch_pipe_parent.send(True)
|
|
self.prefetch_process.join()
|
|
|
|
self.prefetch_stop.close()
|
|
self.prefetch_stop.unlink()
|
|
self.prefetch_skip.close()
|
|
self.prefetch_skip.unlink()
|
|
self.prefetch = False # Avoids double release
|
|
|
|
if self.process_id == 'main' and self.cache_memory_indices is not None:
|
|
self.cache_memory_indices.close()
|
|
self.cache_memory_indices.unlink()
|
|
for shared_mem in self.cache_memory_data + self.cache_memory_label:
|
|
shared_mem.close()
|
|
shared_mem.unlink()
|
|
self.cache_memory_indices = None # Avoids double release
|
|
|
|
def _prefetch_worker(self):
|
|
self.prefetch = False
|
|
self.current_cache = 1
|
|
self._init_workers()
|
|
self.process_id = 'prefetch'
|
|
|
|
while self.prefetch_stop.buf is not None and self.prefetch_stop.buf[0] == 0:
|
|
try:
|
|
self.current_cache = 1 - self.current_cache
|
|
if self.prefetch_skip.buf[0]:
|
|
self.prefetch_skip.buf[0] = 0
|
|
self.step = self.step_per_epoch
|
|
self.index_list[:] = self.cache_indices
|
|
|
|
if self.step >= self.step_per_epoch - 1: # step start at 0
|
|
self.step = 0
|
|
self.epoch += 1
|
|
else:
|
|
self.step += 1
|
|
self.global_step += 1
|
|
|
|
self._next_batch()
|
|
self.prefetch_pipe_child.recv()
|
|
self.prefetch_pipe_child.send(self.current_cache)
|
|
except KeyboardInterrupt:
|
|
break
|
|
|
|
if self.num_workers > 1:
|
|
self.release()
|
|
|
|
def _worker(self, worker_index: int):
|
|
self.process_id = f'worker_{worker_index}'
|
|
self.num_workers = 0
|
|
self.current_cache = 0
|
|
parent_cache_data = self.cache_data
|
|
parent_cache_label = self.cache_label
|
|
self.cache_data = [np.ndarray(self.cache_data[0].shape, dtype=self.cache_data[0].dtype)]
|
|
self.cache_label = [np.ndarray(self.cache_label[0].shape, dtype=self.cache_label[0].dtype)]
|
|
self.index_list[:] = self.cache_indices
|
|
pipe = self.worker_pipes[worker_index][1]
|
|
|
|
while self.worker_stop.buf is not None and self.worker_stop.buf[0] == 0:
|
|
try:
|
|
current_cache, batch_index, start_index, self.batch_size = pipe.recv()
|
|
if self.batch_size == 0:
|
|
continue
|
|
self.index_list = self.cache_indices[start_index:start_index + self.batch_size].copy()
|
|
|
|
self._next_batch()
|
|
parent_cache_data[current_cache][batch_index:batch_index + self.batch_size] = self.cache_data[
|
|
self.current_cache][:self.batch_size]
|
|
parent_cache_label[current_cache][batch_index:batch_index + self.batch_size] = self.cache_label[
|
|
self.current_cache][:self.batch_size]
|
|
pipe.send(True)
|
|
except KeyboardInterrupt:
|
|
break
|
|
except ValueError:
|
|
break
|
|
|
|
def skip_epoch(self):
|
|
if self.prefetch:
|
|
self.prefetch_skip.buf[0] = 1
|
|
self.step = self.step_per_epoch
|
|
self.next_batch()
|
|
|
|
def _worker_next_batch(self):
|
|
index_list = self.index_list[self.step * self.batch_size:(self.step + 1) * self.batch_size]
|
|
batch_len = len(index_list)
|
|
indices_per_worker = batch_len // self.num_workers
|
|
if indices_per_worker == 0:
|
|
indices_per_worker = 1
|
|
|
|
worker_params = []
|
|
batch_index = 0
|
|
start_index = self.step * self.batch_size
|
|
for _worker_index in range(self.num_workers - 1):
|
|
worker_params.append([self.current_cache, batch_index, start_index, indices_per_worker])
|
|
batch_index += indices_per_worker
|
|
start_index += indices_per_worker
|
|
worker_params.append([
|
|
self.current_cache, batch_index, start_index,
|
|
batch_len - ((self.num_workers - 1) * indices_per_worker)])
|
|
|
|
if indices_per_worker == 1 and batch_len < self.num_workers:
|
|
worker_params = worker_params[:batch_len]
|
|
|
|
for params, (pipe, _) in zip(worker_params, self.worker_pipes):
|
|
pipe.send(params)
|
|
for _, (pipe, _) in zip(worker_params, self.worker_pipes):
|
|
pipe.recv()
|
|
|
|
def _next_batch(self):
|
|
if self.num_workers > 1:
|
|
self._worker_next_batch()
|
|
return
|
|
|
|
# Loading data
|
|
if self.data_processor is not None:
|
|
data = []
|
|
for entry in self.index_list[self.step * self.batch_size:(self.step + 1) * self.batch_size]:
|
|
data.append(self.data_processor(self.data[entry]))
|
|
data = np.asarray(data)
|
|
else:
|
|
data = self.data[
|
|
self.index_list[self.step * self.batch_size: (self.step + 1) * self.batch_size]]
|
|
if self.flip_data:
|
|
flip = np.random.uniform()
|
|
if flip < 0.25:
|
|
data = data[:, :, ::-1]
|
|
elif flip < 0.5:
|
|
data = data[:, :, :, ::-1]
|
|
elif flip < 0.75:
|
|
data = data[:, :, ::-1, ::-1]
|
|
|
|
# Loading label
|
|
if self.label_processor is not None:
|
|
label = []
|
|
for entry in self.index_list[self.step * self.batch_size:(self.step + 1) * self.batch_size]:
|
|
label.append(self.label_processor(self.label[entry]))
|
|
label = np.asarray(label)
|
|
else:
|
|
label = self.label[
|
|
self.index_list[self.step * self.batch_size: (self.step + 1) * self.batch_size]]
|
|
|
|
# Process through pipeline
|
|
if self.pipeline is not None:
|
|
for data_index, data_entry in enumerate(data):
|
|
piped_data, piped_label = self.pipeline(data_entry, label[data_index])
|
|
self.cache_data[self.current_cache][data_index] = piped_data
|
|
self.cache_label[self.current_cache][data_index] = piped_label
|
|
else:
|
|
self.cache_data[self.current_cache][:len(data)] = data
|
|
self.cache_label[self.current_cache][:len(label)] = label
|
|
|
|
def next_batch(self) -> Tuple[np.ndarray, np.ndarray]:
|
|
if self.step >= self.step_per_epoch - 1: # step start at 0
|
|
self.step = 0
|
|
self.epoch += 1
|
|
else:
|
|
self.step += 1
|
|
self.global_step += 1
|
|
|
|
if self.prefetch:
|
|
# Shuffles once step ahead in pretech mode because next batch is already prepared
|
|
if self.step == self.step_per_epoch - 1 and self.shuffle:
|
|
np.random.shuffle(self.index_list)
|
|
self.cache_indices[:] = self.index_list
|
|
self.prefetch_pipe_parent.send(True)
|
|
self.current_cache = self.prefetch_pipe_parent.recv()
|
|
else:
|
|
if self.step == 0 and self.shuffle:
|
|
np.random.shuffle(self.index_list)
|
|
if self.num_workers > 1:
|
|
self.cache_indices[:] = self.index_list
|
|
self._next_batch()
|
|
|
|
if self.step == self.step_per_epoch - 1:
|
|
self.batch_data = self.cache_data[self.current_cache][:self.last_batch_size]
|
|
self.batch_label = self.cache_label[self.current_cache][:self.last_batch_size]
|
|
else:
|
|
self.batch_data = self.cache_data[self.current_cache]
|
|
self.batch_label = self.cache_label[self.current_cache]
|
|
|
|
return self.batch_data, self.batch_label
|
|
|
|
|
|
if __name__ == '__main__':
|
|
def test():
|
|
data = np.array(
|
|
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], dtype=np.uint8)
|
|
label = np.array(
|
|
[.1, .2, .3, .4, .5, .6, .7, .8, .9, .10, .11, .12, .13, .14, .15, .16, .17, .18], dtype=np.uint8)
|
|
|
|
for data_processor in [None, lambda x:x]:
|
|
for prefetch in [True, False]:
|
|
for num_workers in [3, 1]:
|
|
print(f'{data_processor=} {prefetch=} {num_workers=}')
|
|
with BatchGenerator(data, label, 5, data_processor=data_processor,
|
|
prefetch=prefetch, num_workers=num_workers) as batch_generator:
|
|
for _ in range(19):
|
|
print(batch_generator.batch_data, batch_generator.epoch, batch_generator.step)
|
|
batch_generator.next_batch()
|
|
print()
|
|
|
|
test()
|