from typing import Union, Tuple import torch import torch.nn as nn from .layers import Conv2d, LayerInfo, Layer class ResBlock(Layer): def __init__(self, in_channels: int, out_channels: int = -1, kernel_size: int = 3, padding: int = 1, stride: Union[int, Tuple[int, int]] = 1, activation=None, batch_norm=None, **kwargs): super().__init__(activation if activation is not None else 0, False) self.batch_norm = None if out_channels == -1: out_channels = in_channels self.seq = nn.Sequential( Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, **kwargs), Conv2d(in_channels, out_channels, kernel_size=3, padding=1, activation=None, batch_norm=batch_norm)) self.residual = Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, activation=None) if ( out_channels != in_channels or stride != 1) else None def forward(self, input_data: torch.Tensor) -> torch.Tensor: if self.residual is not None: return super().forward(self.residual(input_data) + self.seq(input_data)) return super().forward(input_data + self.seq(input_data)) class ResBottleneck(Layer): def __init__(self, in_channels: int, out_channels: int = -1, bottleneck_channels: int = -1, kernel_size: int = 3, stride: Union[int, Tuple[int, int]] = 1, padding=1, activation=None, batch_norm=None, **kwargs): super().__init__(activation if activation is not None else 0, False) self.batch_norm = None if out_channels == -1: out_channels = in_channels if bottleneck_channels == -1: bottleneck_channels = in_channels // 4 self.seq = nn.Sequential( Conv2d(in_channels, bottleneck_channels, kernel_size=1), Conv2d(bottleneck_channels, bottleneck_channels, kernel_size=kernel_size, stride=stride, padding=padding, **kwargs), Conv2d(bottleneck_channels, out_channels, kernel_size=1, activation=None, batch_norm=batch_norm)) self.residual = Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, activation=None) if ( out_channels != in_channels or stride != 1) else None def forward(self, input_data: torch.Tensor) -> torch.Tensor: if self.residual is not None: return super().forward(self.residual(input_data) + self.seq(input_data)) return super().forward(input_data + self.seq(input_data))