import numpy as np def create_box(y_pos: float, x_pos: float, height: float, width: float) -> tuple[float, float, float, float]: y_min, x_min, y_max, x_max = check_rectangle( y_pos - (height / 2), x_pos - (width / 2), y_pos + (height / 2), x_pos + (width / 2)) return (y_min + y_max) / 2, (x_min + x_max) / 2, y_max - y_min, x_max - x_min def check_rectangle(y_min: float, x_min: float, y_max: float, x_max: float) -> tuple[float, float, float, float]: if y_min < 0: y_min = 0 if x_min < 0: x_min = 0 if y_min > 1: y_min = 1 if x_min > 1: x_min = 1 if y_max < 0: y_max = 0 if x_max < 0: x_max = 0 if y_max >= 1: y_max = 1 if x_max >= 1: x_max = 1 return y_min, x_min, y_max, x_max def get_boxes(predictions: np.ndarray, anchors: np.ndarray, class_index: int) -> np.ndarray: boxes = np.zeros(anchors.shape) boxes[:, 0] = (predictions[:, 0] * anchors[:, 2]) + anchors[:, 0] boxes[:, 1] = (predictions[:, 1] * anchors[:, 3]) + anchors[:, 1] boxes[:, 2] = np.exp(predictions[:, 2]) * anchors[:, 2] boxes[:, 3] = np.exp(predictions[:, 3]) * anchors[:, 3] boxes = np.asarray([create_box(*box) for box in boxes]) # return np.insert(boxes, 4, predictions[:, class_index], axis=-1) return np.concatenate([boxes, predictions[:, class_index:class_index + 1]], axis=1) def fast_nms(boxes: np.ndarray, min_iou: float) -> np.ndarray: # if there are no boxes, return an empty list if len(boxes) == 0: return [] # initialize the list of picked indexes pick = [] # grab the coordinates of the bounding boxes y_min = boxes[:, 0] - (boxes[:, 2] / 2) y_max = boxes[:, 0] + (boxes[:, 2] / 2) x_min = boxes[:, 1] - (boxes[:, 3] / 2) x_max = boxes[:, 1] + (boxes[:, 3] / 2) scores = boxes[:, 4] # compute the area of the bounding boxes and sort the bounding boxes by the scores areas = (x_max - x_min) * (y_max - y_min) idxs = np.argsort(scores) # keep looping while some indexes still remain in the indexes # list while len(idxs) > 0: # grab the last index in the indexes list and add the # index value to the list of picked indexes last = len(idxs) - 1 i = idxs[last] pick.append(i) inter_tops = np.maximum(y_min[i], y_min[idxs[:last]]) inter_bottoms = np.minimum(y_max[i], y_max[idxs[:last]]) inter_lefts = np.maximum(x_min[i], x_min[idxs[:last]]) inter_rights = np.minimum(x_max[i], x_max[idxs[:last]]) inter_areas = (inter_rights - inter_lefts) * (inter_bottoms - inter_tops) # compute the ratio of overlap union_area = (areas[idxs[:last]] + areas[i]) - inter_areas overlap = inter_areas / union_area # delete all indexes from the index list that have less overlap than min_iou idxs = np.delete( idxs, np.concatenate(([last], np.where(overlap > min_iou)[0]))) # return only the bounding boxes that were picked using the # integer data type return boxes[pick]