import torch import torch.nn as nn import torch.nn.functional as F from .utils.logger import DummyLogger class LayerInfo(): def __init__(self): self.memory = 0.0 self.ops = 0.0 self.output = 0.0 class Layer(nn.Module): # Default layer arguments ACTIVATION = F.leaky_relu BATCH_NORM = True BATCH_NORM_TRAINING = False BATCH_NORM_DECAY = 0.95 REGULARIZER = None PADDING = 'SAME' IS_TRAINING = False METRICS = False VERBOSE = 0 LOGGER = DummyLogger() def __init__(self, activation, batch_norm): super(Layer, self).__init__() self.name = 'Layer' self.info = LayerInfo() # Preload default self.activation = Layer.ACTIVATION if activation == 0 else activation self.batch_norm = Layer.BATCH_NORM if batch_norm is None else batch_norm def forward(self, input_data: torch.Tensor) -> torch.Tensor: output = input_data if self.activation is not None: output = self.activation(output) if self.batch_norm is not None: output = self.batch_norm(output) return output class Conv2d(Layer): def __init__(self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, activation=0, batch_norm=None, **kwargs): super(Conv2d, self).__init__(activation, batch_norm) self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, **kwargs) self.batch_norm = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.01) if self.batch_norm else None def forward(self, input_data: torch.Tensor) -> torch.Tensor: return super().forward(self.conv(input_data))