Merge branch 'master' into 'BatchNormModifications'
# Conflicts: # layers.py
This commit is contained in:
commit
fe11f3e6d5
11 changed files with 753 additions and 159 deletions
13
layers.py
13
layers.py
|
|
@ -22,8 +22,13 @@ class Layer(nn.Module):
|
|||
def __init__(self, activation, use_batch_norm):
|
||||
super().__init__()
|
||||
# Preload default
|
||||
if activation == 0:
|
||||
activation = Layer.ACTIVATION
|
||||
if isinstance(activation, type):
|
||||
self.activation = activation()
|
||||
else:
|
||||
self.activation = activation
|
||||
self.batch_norm: torch.nn._BatchNorm = None
|
||||
self.activation = Layer.ACTIVATION if activation == 0 else activation
|
||||
self.use_batch_norm = Layer.USE_BATCH_NORM if use_batch_norm is None else use_batch_norm
|
||||
|
||||
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
|
||||
|
|
@ -40,7 +45,7 @@ class Linear(Layer):
|
|||
def __init__(self, in_channels: int, out_channels: int, activation=0, use_batch_norm: bool = None, **kwargs):
|
||||
super().__init__(activation, use_batch_norm)
|
||||
|
||||
self.fc = nn.Linear(in_channels, out_channels, **kwargs)
|
||||
self.fc = nn.Linear(in_channels, out_channels, bias=not self.batch_norm, **kwargs)
|
||||
self.batch_norm = nn.BatchNorm1d(
|
||||
out_channels,
|
||||
momentum=Layer.BATCH_NORM_MOMENTUM,
|
||||
|
|
@ -76,7 +81,7 @@ class Conv2d(Layer):
|
|||
self.batch_norm = nn.BatchNorm2d(
|
||||
out_channels,
|
||||
momentum=Layer.BATCH_NORM_MOMENTUM,
|
||||
track_running_stats=not Layer.BATCH_NORM_TRAINING if Layer.USE_BATCH_NORM else None
|
||||
track_running_stats=Layer.BATCH_NORM_TRAINING) if self.use_batch_norm else None
|
||||
|
||||
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
|
||||
return super().forward(self.conv(input_data))
|
||||
|
|
@ -109,7 +114,7 @@ class Deconv2d(Layer):
|
|||
self.batch_norm = nn.BatchNorm2d(
|
||||
out_channels,
|
||||
momentum=Layer.BATCH_NORM_MOMENTUM,
|
||||
track_running_stats=not Layer.BATCH_NORM_TRAINING if Layer.USE_BATCH_NORM else None
|
||||
track_running_stats=Layer.BATCH_NORM_TRAINING) if self.use_batch_norm else None
|
||||
|
||||
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
|
||||
return super().forward(self.deconv(input_data))
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue