Merge branch 'hoel-bagard/torch_utils-BatchNormModifications'

This commit is contained in:
Corentin 2021-05-21 16:00:53 +09:00
commit 90abb84710
2 changed files with 71 additions and 37 deletions

View file

@ -2,36 +2,25 @@ from typing import Union, Tuple
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F
from .utils.logger import DummyLogger from .utils.logger import DummyLogger
class LayerInfo():
def __init__(self):
self.memory = 0.0
self.ops = 0.0
self.output = 0.0
class Layer(nn.Module): class Layer(nn.Module):
# Default layer arguments # Default layer arguments
ACTIVATION = F.leaky_relu ACTIVATION = torch.nn.LeakyReLU
ACTIVATION_KWARGS = {"negative_slope": 0.1}
BATCH_NORM = True USE_BATCH_NORM = True
BATCH_NORM_TRAINING = True BATCH_NORM_TRAINING = True
BATCH_NORM_MOMENTUM = 0.01 BATCH_NORM_MOMENTUM = 0.01
IS_TRAINING = False IS_TRAINING = False
METRICS = False METRICS = False
VERBOSE = 0
LOGGER = DummyLogger() LOGGER = DummyLogger()
def __init__(self, activation, batch_norm): def __init__(self, activation):
super().__init__() super().__init__()
self.name = 'Layer'
self.info = LayerInfo()
# Preload default # Preload default
if activation == 0: if activation == 0:
activation = Layer.ACTIVATION activation = Layer.ACTIVATION
@ -39,26 +28,27 @@ class Layer(nn.Module):
self.activation = activation() self.activation = activation()
else: else:
self.activation = activation self.activation = activation
self.batch_norm = Layer.BATCH_NORM if batch_norm is None else batch_norm self.batch_norm: torch.nn._BatchNorm
def forward(self, input_data: torch.Tensor) -> torch.Tensor: def forward(self, input_data: torch.Tensor) -> torch.Tensor:
output = input_data output = input_data
if self.activation is not None: if self.activation:
output = self.activation(output) output = self.activation(output)
if self.batch_norm is not None: if self.batch_norm:
output = self.batch_norm(output) output = self.batch_norm(output)
return output return output
class Linear(Layer): class Linear(Layer):
def __init__(self, in_channels: int, out_channels: int, activation=0, batch_norm=None, **kwargs): def __init__(self, in_channels: int, out_channels: int, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, batch_norm) super().__init__(activation)
self.fc = nn.Linear(in_channels, out_channels, bias=not self.batch_norm, **kwargs) self.fc = nn.Linear(in_channels, out_channels, bias=not self.batch_norm, **kwargs)
use_batch_norm = Layer.USE_BATCH_NORM if use_batch_norm is None else use_batch_norm
self.batch_norm = nn.BatchNorm1d( self.batch_norm = nn.BatchNorm1d(
out_channels, out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM, momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=Layer.BATCH_NORM_TRAINING) if self.batch_norm else None track_running_stats=Layer.BATCH_NORM_TRAINING) if use_batch_norm else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor: def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.fc(input_data)) return super().forward(self.fc(input_data))
@ -66,15 +56,16 @@ class Linear(Layer):
class Conv1d(Layer): class Conv1d(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3, def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=0, batch_norm=None, **kwargs): stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, batch_norm) super().__init__(activation)
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride,
bias=not self.batch_norm, **kwargs) bias=not self.use_batch_norm, **kwargs)
use_batch_norm = Layer.USE_BATCH_NORM if use_batch_norm is None else use_batch_norm
self.batch_norm = nn.BatchNorm1d( self.batch_norm = nn.BatchNorm1d(
out_channels, out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM, momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=Layer.BATCH_NORM_TRAINING) if self.batch_norm else None track_running_stats=Layer.BATCH_NORM_TRAINING) if use_batch_norm else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor: def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.conv(input_data)) return super().forward(self.conv(input_data))
@ -82,15 +73,16 @@ class Conv1d(Layer):
class Conv2d(Layer): class Conv2d(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3, def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=0, batch_norm=None, **kwargs): stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, batch_norm) super().__init__(activation, use_batch_norm)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride,
bias=not self.batch_norm, **kwargs) bias=not self.use_batch_norm, **kwargs)
use_batch_norm = Layer.USE_BATCH_NORM if use_batch_norm is None else use_batch_norm
self.batch_norm = nn.BatchNorm2d( self.batch_norm = nn.BatchNorm2d(
out_channels, out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM, momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=Layer.BATCH_NORM_TRAINING) if self.batch_norm else None track_running_stats=Layer.BATCH_NORM_TRAINING) if self.use_batch_norm else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor: def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.conv(input_data)) return super().forward(self.conv(input_data))
@ -98,15 +90,16 @@ class Conv2d(Layer):
class Conv3d(Layer): class Conv3d(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3, def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=0, batch_norm=None, **kwargs): stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, batch_norm) super().__init__(activation)
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride,
bias=not self.batch_norm, **kwargs) bias=not self.use_batch_norm, **kwargs)
use_batch_norm = Layer.USE_BATCH_NORM if use_batch_norm is None else use_batch_norm
self.batch_norm = nn.BatchNorm3d( self.batch_norm = nn.BatchNorm3d(
out_channels, out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM, momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=Layer.BATCH_NORM_TRAINING) if self.batch_norm else None track_running_stats=Layer.BATCH_NORM_TRAINING) if use_batch_norm else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor: def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.conv(input_data)) return super().forward(self.conv(input_data))
@ -114,16 +107,17 @@ class Conv3d(Layer):
class Deconv2d(Layer): class Deconv2d(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3, def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=0, batch_norm=None, **kwargs): stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, batch_norm) super().__init__(activation)
self.deconv = nn.ConvTranspose2d( self.deconv = nn.ConvTranspose2d(
in_channels, out_channels, kernel_size, stride=stride, in_channels, out_channels, kernel_size, stride=stride,
bias=not self.batch_norm, **kwargs) bias=not self.use_batch_norm, **kwargs)
use_batch_norm = Layer.USE_BATCH_NORM if use_batch_norm is None else use_batch_norm
self.batch_norm = nn.BatchNorm2d( self.batch_norm = nn.BatchNorm2d(
out_channels, out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM, momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=Layer.BATCH_NORM_TRAINING) if self.batch_norm else None track_running_stats=Layer.BATCH_NORM_TRAINING) if use_batch_norm else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor: def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.deconv(input_data)) return super().forward(self.deconv(input_data))

View file

@ -0,0 +1,40 @@
import torch
import torch.nn as nn
class Attention(nn.Module):
def __init__(self, dim: int, head_count: int = None, qkv_bias: bool = False, qk_scale: float = None,
attention_drop: float = None, projection_drop: float = None):
super().__init__()
self.head_count = head_count
head_dim = dim // head_count
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attention_drop = nn.Dropout(
attention_drop if attention_drop is not None else VisionTransformer.ATTENTION_DROP)
self.projector = nn.Linear(dim, dim)
self.projection_drop = nn.Dropout(
projection_drop if projection_drop is not None else VisionTransformer.PROJECTION_DROP)
def foward(self, input_data: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, channel_count = input_data.shape
qkv = self.qkv(input_data).reshape(
batch_size, sequence_length, 3, self.head_count, channel_count // self.head_count).permute(
2, 0, 3, 1, 4)
# (output shape : 3, batch_size, head_ctoun, sequence_lenght, channel_count / head_count)
query, key, value = qkv[0], qkv[1], qkv[2]
attention = self.attention_drop(((query @ key.transpose(-2, -1)) * self.scale).softmax(dim=-1))
return self.projection_drop(self.projector(
(attention @ value).transpose(1, 2).reshape(batch_size, sequence_length, channel_count)))
class VisionTransformer(nn.Module):
HEAD_COUNT = 8
MLP_RATIO = 4.0
QKV_BIAS = False
ATTENTION_DROP = 0.0
PROJECTION_DROP = 0.0
def __init__(self, dim: int, head_count: int, mlp_ratio: float = None,
qkv_bias: bool = None