Fixed default use_batch_norm value

This commit is contained in:
Hoel Bagard 2021-01-21 20:36:22 +09:00
commit 54000b6c34

View file

@ -2,49 +2,49 @@ from typing import Union, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from .utils.logger import DummyLogger
class Layer(nn.Module):
# Default layer arguments
ACTIVATION = F.leaky_relu
ACTIVATION = torch.nn.LeakyReLU
ACTIVATION_KWARGS = {"negative_slope": 0.1}
BATCH_NORM = True
USE_BATCH_NORM = True
BATCH_NORM_TRAINING = True
BATCH_NORM_MOMENTUM = 0.01
IS_TRAINING = False
METRICS = False
VERBOSE = 0
LOGGER = DummyLogger()
def __init__(self, activation):
def __init__(self, activation, use_batch_norm):
super().__init__()
self.name = 'Layer'
# Preload default
self.activation = Layer.ACTIVATION if activation == 0 else activation
self.use_batch_norm = Layer.USE_BATCH_NORM if use_batch_norm is None else use_batch_norm
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
output = input_data
if self.activation is not None:
output = self.activation(output)
if self.batch_norm is not None:
if self.use_batch_norm is not None:
output = self.batch_norm(output)
return output
class Linear(Layer):
def __init__(self, in_channels: int, out_channels: int, activation=0, use_batch_norm: bool = False, **kwargs):
super().__init__(activation)
def __init__(self, in_channels: int, out_channels: int, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, use_batch_norm)
self.fc = nn.Linear(in_channels, out_channels, **kwargs)
self.batch_norm = nn.BatchNorm1d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=Layer.BATCH_NORM_TRAINING) if use_batch_norm else None
track_running_stats=Layer.BATCH_NORM_TRAINING if Layer.USE_BATCH_NORM else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.fc(input_data))
@ -52,15 +52,15 @@ class Linear(Layer):
class Conv1d(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = False, **kwargs):
super().__init__(activation)
stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, use_batch_norm)
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride,
bias=not self.batch_norm, **kwargs)
bias=not Layer.USE_BATCH_NORM, **kwargs)
self.batch_norm = nn.BatchNorm1d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=Layer.BATCH_NORM_TRAINING) if use_batch_norm else None
track_running_stats=Layer.BATCH_NORM_TRAINING if Layer.USE_BATCH_NORM else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.conv(input_data))
@ -68,15 +68,15 @@ class Conv1d(Layer):
class Conv2d(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = False, **kwargs):
super().__init__(activation)
stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, use_batch_norm)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride,
bias=not self.batch_norm, **kwargs)
bias=not Layer.USE_BATCH_NORM, **kwargs)
self.batch_norm = nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING) if use_batch_norm else None
track_running_stats=not Layer.BATCH_NORM_TRAINING if Layer.USE_BATCH_NORM else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.conv(input_data))
@ -84,15 +84,15 @@ class Conv2d(Layer):
class Conv3d(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = False, **kwargs):
super().__init__(activation)
stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, use_batch_norm)
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride,
bias=not self.batch_norm, **kwargs)
bias=not Layer.USE_BATCH_NORM, **kwargs)
self.batch_norm = nn.BatchNorm3d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=Layer.BATCH_NORM_TRAINING) if use_batch_norm else None
track_running_stats=Layer.BATCH_NORM_TRAINING if Layer.USE_BATCH_NORM else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.conv(input_data))
@ -100,16 +100,16 @@ class Conv3d(Layer):
class Deconv2d(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = False, **kwargs):
super().__init__(activation)
stride: Union[int, Tuple[int, int]] = 1, activation=0, use_batch_norm: bool = None, **kwargs):
super().__init__(activation, use_batch_norm)
self.deconv = nn.ConvTranspose2d(
in_channels, out_channels, kernel_size, stride=stride,
bias=not self.batch_norm, **kwargs)
bias=not Layer.USE_BATCH_NORM, **kwargs)
self.batch_norm = nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING) if use_batch_norm else None
track_running_stats=not Layer.BATCH_NORM_TRAINING if Layer.USE_BATCH_NORM else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.deconv(input_data))