Residual blocks, precache for BatchGenerator

This commit is contained in:
Corentin Risselin 2020-09-09 02:27:59 +09:00
commit 5081cf63fe
3 changed files with 139 additions and 4 deletions

67
residual.py Normal file
View file

@ -0,0 +1,67 @@
from typing import Union, Tuple
import torch
import torch.nn as nn
from .layers import LayerInfo, Layer
class ResBlock(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
activation=None, **kwargs):
super().__init__(activation if activation is not None else 0, False)
self.seq = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=False, **kwargs),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING),
torch.nn.LeakyReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, bias=False, padding=1),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING))
self.batch_norm = nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING) if self.batch_norm else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(input_data + self.seq(input_data))
class ResBottleneck(Layer):
def __init__(self, in_channels: int, out_channels: int, planes: int = 1, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=None, **kwargs):
super().__init__(activation if activation is not None else 0, False)
self.batch_norm = None
self.seq = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING),
torch.nn.LeakyReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=False, **kwargs),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING),
torch.nn.LeakyReLU(),
nn.Conv2d(out_channels, planes * out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING))
self.downsample = nn.Sequential(
nn.Conv2d(in_channels, planes * out_channels, stride=stride, kernel_size=1),
nn.BatchNorm2d(
planes * out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING))
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.downsample(input_data) + self.seq(input_data))