Residual blocks, precache for BatchGenerator

This commit is contained in:
Corentin Risselin 2020-09-09 02:27:59 +09:00
commit 5081cf63fe
3 changed files with 139 additions and 4 deletions

View file

@ -50,7 +50,8 @@ class Conv2d(Layer):
stride: Union[int, Tuple[int, int]] = 1, activation=0, batch_norm=None, **kwargs):
super().__init__(activation, batch_norm)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, **kwargs)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
bias=not self.batch_norm, **kwargs)
self.batch_norm = nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,

67
residual.py Normal file
View file

@ -0,0 +1,67 @@
from typing import Union, Tuple
import torch
import torch.nn as nn
from .layers import LayerInfo, Layer
class ResBlock(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3,
activation=None, **kwargs):
super().__init__(activation if activation is not None else 0, False)
self.seq = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=False, **kwargs),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING),
torch.nn.LeakyReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, bias=False, padding=1),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING))
self.batch_norm = nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING) if self.batch_norm else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(input_data + self.seq(input_data))
class ResBottleneck(Layer):
def __init__(self, in_channels: int, out_channels: int, planes: int = 1, kernel_size: int = 3,
stride: Union[int, Tuple[int, int]] = 1, activation=None, **kwargs):
super().__init__(activation if activation is not None else 0, False)
self.batch_norm = None
self.seq = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING),
torch.nn.LeakyReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=False, **kwargs),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING),
torch.nn.LeakyReLU(),
nn.Conv2d(out_channels, planes * out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(
out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING))
self.downsample = nn.Sequential(
nn.Conv2d(in_channels, planes * out_channels, stride=stride, kernel_size=1),
nn.BatchNorm2d(
planes * out_channels,
momentum=Layer.BATCH_NORM_MOMENTUM,
track_running_stats=not Layer.BATCH_NORM_TRAINING))
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.downsample(input_data) + self.seq(input_data))

View file

@ -1,4 +1,6 @@
import math
import multiprocessing as mp
from multiprocessing import shared_memory
import os
from typing import Optional, Tuple
@ -8,11 +10,12 @@ import numpy as np
class BatchGenerator:
def __init__(self, data, label, batch_size, data_processor=None, label_processor=None,
def __init__(self, data, label, batch_size, data_processor=None, label_processor=None, precache=True,
shuffle=True, preload=False, save=None, left_right_flip=False):
self.batch_size = batch_size
self.shuffle = shuffle
self.left_right_flip = left_right_flip
self.precache = precache and not preload
if not preload:
self.data_processor = data_processor
@ -60,6 +63,64 @@ class BatchGenerator:
if shuffle:
np.random.shuffle(self.index_list)
if self.precache:
data_sample = np.array([data_processor(entry) if data_processor else entry
for entry in self.data[:batch_size]])
label_sample = np.array([label_processor(entry) if label_processor else entry
for entry in self.label[:batch_size]])
self.cache_memory_data = [
shared_memory.SharedMemory(create=True, size=data_sample.nbytes),
shared_memory.SharedMemory(create=True, size=data_sample.nbytes)]
self.cache_data = [
np.ndarray(data_sample.shape, dtype=data_sample.dtype, buffer=self.cache_memory_data[0].buf),
np.ndarray(data_sample.shape, dtype=data_sample.dtype, buffer=self.cache_memory_data[1].buf)]
self.cache_memory_label = [
shared_memory.SharedMemory(create=True, size=label_sample.nbytes),
shared_memory.SharedMemory(create=True, size=label_sample.nbytes)]
self.cache_label = [
np.ndarray(label_sample.shape, dtype=label_sample.dtype, buffer=self.cache_memory_label[0].buf),
np.ndarray(label_sample.shape, dtype=label_sample.dtype, buffer=self.cache_memory_label[1].buf)]
self.cache_pipe_parent, self.cache_pipe_child = mp.Pipe()
self.cache_stop = shared_memory.SharedMemory(create=True, size=1)
self.cache_stop.buf[0] = 0
self.cache_process = mp.Process(target=self.cache_worker)
self.cache_process.start()
def __del__(self):
if self.precache:
self.cache_stop.buf[0] = 1
self.cache_pipe_parent.send(True)
self.cache_process.join()
self.cache_stop.close()
self.cache_stop.unlink()
self.cache_memory_data[0].close()
self.cache_memory_data[0].unlink()
self.cache_memory_data[1].close()
self.cache_memory_data[1].unlink()
self.cache_memory_label[0].close()
self.cache_memory_label[0].unlink()
self.cache_memory_label[1].close()
self.cache_memory_label[1].unlink()
def cache_worker(self):
self.precache = False
self.next_batch()
self.cache_data[0][:] = self.batch_data[:]
self.cache_label[0][:] = self.batch_label[:]
current_cache = 0
while not self.cache_stop.buf[0]:
try:
self.cache_pipe_child.recv()
self.cache_pipe_child.send(current_cache)
self.next_batch()
current_cache = 1 - current_cache
self.cache_data[current_cache][:len(self.batch_data)] = self.batch_data[:]
self.cache_label[current_cache][:len(self.batch_label)] = self.batch_label[:]
except KeyboardInterrupt:
break
def next_batch(self) -> Tuple[np.ndarray, np.ndarray]:
if self.step >= self.step_per_epoch - 1: # step start at 0
self.step = 0
@ -71,7 +132,11 @@ class BatchGenerator:
self.global_step += 1
# Loading data
if self.data_processor is not None:
if self.precache:
self.cache_pipe_parent.send(True)
current_cache = self.cache_pipe_parent.recv()
self.batch_data = self.cache_data[current_cache].copy()
elif self.data_processor is not None:
self.batch_data = []
for entry in self.index_list[self.step * self.batch_size:(self.step + 1) * self.batch_size]:
self.batch_data.append(self.data_processor(self.data[entry]))
@ -80,7 +145,9 @@ class BatchGenerator:
self.batch_data = self.data[
self.index_list[self.step * self.batch_size: (self.step + 1) * self.batch_size]]
# Loading label
if self.label_processor is not None:
if self.precache:
self.batch_label = self.cache_label[current_cache].copy()
elif self.label_processor is not None:
self.batch_label = []
for entry in self.index_list[self.step * self.batch_size:(self.step + 1) * self.batch_size]:
self.batch_label.append(self.label_processor(self.label[entry]))