Fix batch norm training default value
This commit is contained in:
parent
7f90010972
commit
4b786943f5
1 changed files with 4 additions and 4 deletions
|
|
@ -19,7 +19,7 @@ class Layer(nn.Module):
|
|||
ACTIVATION = F.leaky_relu
|
||||
|
||||
BATCH_NORM = True
|
||||
BATCH_NORM_TRAINING = False
|
||||
BATCH_NORM_TRAINING = True
|
||||
BATCH_NORM_MOMENTUM = 0.01
|
||||
|
||||
IS_TRAINING = False
|
||||
|
|
@ -28,7 +28,7 @@ class Layer(nn.Module):
|
|||
LOGGER = DummyLogger()
|
||||
|
||||
def __init__(self, activation, batch_norm):
|
||||
super(Layer, self).__init__()
|
||||
super().__init__()
|
||||
self.name = 'Layer'
|
||||
self.info = LayerInfo()
|
||||
|
||||
|
|
@ -55,7 +55,7 @@ class Conv1d(Layer):
|
|||
self.batch_norm = nn.BatchNorm1d(
|
||||
out_channels,
|
||||
momentum=Layer.BATCH_NORM_MOMENTUM,
|
||||
track_running_stats=not Layer.BATCH_NORM_TRAINING) if self.batch_norm else None
|
||||
track_running_stats=Layer.BATCH_NORM_TRAINING) if self.batch_norm else None
|
||||
|
||||
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
|
||||
return super().forward(self.conv(input_data))
|
||||
|
|
@ -87,7 +87,7 @@ class Conv3d(Layer):
|
|||
self.batch_norm = nn.BatchNorm3d(
|
||||
out_channels,
|
||||
momentum=Layer.BATCH_NORM_MOMENTUM,
|
||||
track_running_stats=not Layer.BATCH_NORM_TRAINING) if self.batch_norm else None
|
||||
track_running_stats=Layer.BATCH_NORM_TRAINING) if self.batch_norm else None
|
||||
|
||||
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
|
||||
return super().forward(self.conv(input_data))
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue