Layers, batch generator, memory

This commit is contained in:
Corentin Risselin 2020-03-31 13:46:01 +09:00
commit 268429fa1a
5 changed files with 277 additions and 0 deletions

1
.gitignore vendored Normal file
View file

@ -0,0 +1 @@
*.pyc

59
layers.py Normal file
View file

@ -0,0 +1,59 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from .utils.logger import DummyLogger
class LayerInfo():
def __init__(self):
self.memory = 0.0
self.ops = 0.0
self.output = 0.0
class Layer(nn.Module):
# Default layer arguments
ACTIVATION = F.leaky_relu
BATCH_NORM = True
BATCH_NORM_TRAINING = False
BATCH_NORM_DECAY = 0.95
REGULARIZER = None
PADDING = 'SAME'
IS_TRAINING = False
METRICS = False
VERBOSE = 0
LOGGER = DummyLogger()
def __init__(self, activation, batch_norm):
super(Layer, self).__init__()
self.name = 'Layer'
self.info = LayerInfo()
# Preload default
self.activation = Layer.ACTIVATION if activation == 0 else activation
self.batch_norm = Layer.BATCH_NORM if batch_norm is None else batch_norm
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
output = input_data
if self.activation is not None:
output = self.activation(output)
if self.batch_norm is not None:
output = self.batch_norm(output)
return output
class Conv2d(Layer):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1,
activation=0, batch_norm=None, **kwargs):
super(Conv2d, self).__init__(activation, batch_norm)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, **kwargs)
self.batch_norm = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.01) if self.batch_norm else None
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return super().forward(self.conv(input_data))

20
train.py Normal file
View file

@ -0,0 +1,20 @@
from typing import List, Tuple
import torch
from .utils.memory import human_size
def parameter_summary(network: torch.nn.Module) -> List[Tuple[str, Tuple[int], str]]:
""" Returns network parameter
Returns a list of tuple: name, shape (tuple os ints), size (string)
Args:
network (torch.nn.Module): network to parse
"""
parameter_info = []
for name, param in network.named_parameters():
numpy = param.detach().cpu().numpy()
parameter_info.append((name, numpy.shape, human_size(numpy.size * numpy.dtype.itemsize)))
return parameter_info

189
utils/batch_generator.py Normal file
View file

@ -0,0 +1,189 @@
import math
import os
from typing import Optional, Tuple
import numpy as np
class BatchGenerator:
def __init__(self, data, label, batch_size, data_processor=None, label_processor=None,
shuffle=True, preload=False, save=None, left_right_flip=False):
self.batch_size = batch_size
self.shuffle = shuffle
self.left_right_flip = left_right_flip
if not preload:
self.data_processor = data_processor
self.label_processor = label_processor
self.data = data
self.label = label
else:
self.data_processor = None
self.label_processor = None
if save and os.path.exists(save + '_data.npy'):
self.data = np.load(save + '_data.npy', allow_pickle=True)
self.label = np.load(save + '_label.npy', allow_pickle=True)
else:
if data_processor:
self.data = np.asarray([data_processor(entry) for entry in data])
else:
self.data = data
if label_processor:
self.label = np.asarray([label_processor(entry) for entry in label])
else:
self.label = label
if save:
np.save(save + '_data.npy', self.data, allow_pickle=True)
np.save(save + '_label.npy', self.label, allow_pickle=True)
self.step_per_epoch = math.ceil(len(self.data) / batch_size)
self.epoch = 0
self.global_step = -1
self.step = -1
self.batch_data: Optional[np.ndarray] = None
self.batch_label: Optional[np.ndarray] = None
self.index_list = np.arange(len(self.data))
if shuffle:
np.random.shuffle(self.index_list)
def next_batch(self) -> Tuple[np.ndarray, np.ndarray]:
if self.step >= self.step_per_epoch - 1: # step start at 0
self.step = 0
self.epoch += 1
if self.shuffle:
np.random.shuffle(self.index_list)
else:
self.step += 1
self.global_step += 1
# Loading data
if self.data_processor is not None:
self.batch_data = []
for entry in self.index_list[self.step * self.batch_size:(self.step + 1) * self.batch_size]:
self.batch_data.append(self.data_processor(self.data[entry]))
self.batch_data = np.asarray(self.batch_data)
else:
self.batch_data = self.data[
self.index_list[self.step * self.batch_size: (self.step + 1) * self.batch_size]]
# Loading label
if self.label_processor is not None:
self.batch_label = []
for entry in self.index_list[self.step * self.batch_size:(self.step + 1) * self.batch_size]:
self.batch_label.append(self.label_processor(self.label[entry]))
self.batch_label = np.asarray(self.batch_label)
else:
self.batch_label = self.label[
self.index_list[self.step * self.batch_size: (self.step + 1) * self.batch_size]]
# print('next_batch : epoch {}, step {}/{}, data {}, label {}'.format(
# self.epoch, self.step, self.step_per_epoch - 1, self.batch_data.shape, self.batch_label.shape))
if self.left_right_flip and np.random.uniform() > 0.5:
self.batch_data = self.batch_data[:, :, ::-1]
self.batch_label = self.batch_label[:, :, ::-1]
return self.batch_data, self.batch_label
class SequenceGenerator:
def __init__(self, data, label, sequence_size, batch_size, data_processor=None, label_processor=None,
preload=False, shuffle=True, save=None):
self.sequence_size = sequence_size
self.batch_size = batch_size
self.shuffle = shuffle
self.index_list = []
for sequence_index in range(len(data)):
start_indices = np.expand_dims(
np.arange(len(data[sequence_index]) - sequence_size, dtype=np.uint8),
axis=-1)
start_indices = np.insert(start_indices, 0, sequence_index, axis=1)
self.index_list.append(start_indices)
self.index_list = np.concatenate(self.index_list, axis=0)
self.step_per_epoch = math.ceil(len(self.index_list) / batch_size)
if not preload:
self.data_processor = data_processor
self.label_processor = label_processor
self.data = data
self.label = label
else:
self.data_processor = None
self.label_processor = None
if save and os.path.exists(save + '_data.npy'):
self.data = np.load(save + '_data.npy', allow_pickle=True)
self.label = np.load(save + '_label.npy', allow_pickle=True)
else:
if data_processor:
self.data = np.asarray(
[np.asarray([data_processor(entry) for entry in serie]) for serie in data])
else:
self.data = data
if label_processor:
self.label = np.asarray(
[np.asarray([label_processor(entry) for entry in serie]) for serie in label])
else:
self.label = label
if save:
np.save(save + '_data.npy', self.data, allow_pickle=True)
np.save(save + '_label.npy', self.label, allow_pickle=True)
self.epoch = 0
self.global_step = -1
self.step = -1
self.batch_data: Optional[np.ndarray] = None
self.batch_label: Optional[np.ndarray] = None
if shuffle:
np.random.shuffle(self.index_list)
def next_batch(self) -> Tuple[np.ndarray, np.ndarray]:
if self.step >= self.step_per_epoch - 1: # step start at 0
self.step = 0
self.epoch += 1
if self.shuffle:
np.random.shuffle(self.index_list)
else:
self.step += 1
self.global_step += 1
# Loading data
if self.data_processor is not None:
self.batch_data = []
for sequence_index, start_index in self.index_list[
self.step * self.batch_size:(self.step + 1) * self.batch_size]:
self.batch_data.append(
[self.data_processor(input_data)
for input_data in self.data[sequence_index][start_index: start_index + self.sequence_size]])
self.batch_data = np.asarray(self.batch_data)
else:
self.batch_data = []
for sequence_index, start_index in self.index_list[
self.step * self.batch_size:(self.step + 1) * self.batch_size]:
self.batch_data.append(
self.data[sequence_index][start_index: start_index + self.sequence_size])
self.batch_data = np.asarray(self.batch_data)
# Loading label
if self.label_processor is not None:
self.batch_label = []
for sequence_index, start_index in self.index_list[
self.step * self.batch_size:(self.step + 1) * self.batch_size]:
self.batch_label.append(
[self.label_processor(input_data)
for input_data in self.label[sequence_index][start_index: start_index + self.sequence_size]])
self.batch_label = np.asarray(self.batch_label)
else:
self.batch_label = []
for sequence_index, start_index in self.index_list[
self.step * self.batch_size:(self.step + 1) * self.batch_size]:
self.batch_label.append(
self.label[sequence_index][start_index: start_index + self.sequence_size])
self.batch_label = np.asarray(self.batch_label)
return self.batch_data, self.batch_label

8
utils/memory.py Normal file
View file

@ -0,0 +1,8 @@
def human_size(byte_count: int) -> str:
"""Output byte amount in human readable format"""
amount = float(byte_count)
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi', 'Yi']:
if amount < 1024.0:
break
amount /= 1024.0
return f'{amount:.2f}{unit}B'