Add tensorflow implementation and Encoder experiment

This commit is contained in:
Corentin 2021-09-24 15:42:07 +09:00
commit db52231fa0
6 changed files with 471 additions and 72 deletions

194
modulo_tf.py Normal file
View file

@ -0,0 +1,194 @@
from argparse import ArgumentParser
from pathlib import Path
import math
import os
import shutil
import sys
import time
import numpy as np
import tensorflow as tf
from src.tf_network import TFLSTMModel
from src.torch_utils.utils.batch_generator import BatchGenerator
def generate_data(batch_size: int, data_length: int) -> tuple[np.ndarray, np.ndarray]:
modulos = np.random.uniform(3, data_length // 2 + 1, batch_size).astype(np.int32)
data = np.zeros((data_length, batch_size, 1), dtype=np.float32)
starts = []
for mod in modulos:
starts.append(int(np.random.uniform(0, mod)))
for i in range(batch_size):
# np.where(data[i] % modulos[i] == starts[i], [1.0], data[i])
for j in range(starts[i], data_length, modulos[i]):
data[j, i, 0] = 1.0
label = []
for i in range(batch_size):
label.append(1 if len(data[:, i]) % modulos[i] == starts[i] else 0)
return data, np.asarray(label, dtype=np.int64)
class DataGenerator:
MAX_LENGTH = 1
INITIALIZED = False
@staticmethod
def pipeline(sequence_length, _dummy_label):
if not DataGenerator.INITIALIZED:
np.random.seed(time.time_ns() % (2**32))
DataGenerator.INITIALIZED = True
data = np.zeros((DataGenerator.MAX_LENGTH, 1), dtype=np.float32)
modulo = int(np.random.uniform(3, sequence_length // 2 + 1))
start = int(np.random.uniform(0, modulo))
for i in range(start, sequence_length, modulo):
data[i, 0] = 1.0
return data, np.asarray(1 if sequence_length % modulo == start else 0, dtype=np.int64)
def main():
parser = ArgumentParser()
parser.add_argument('--output', type=Path, default=Path('output', 'modulo'), help='Output dir')
parser.add_argument('--model', default='torch-lstm', help='Model to train')
parser.add_argument('--batch', type=int, default=32, help='Batch size')
parser.add_argument('--sequence', type=int, default=12, help='Max sequence length')
parser.add_argument('--hidden', type=int, default=16, help='LSTM cells hidden size')
parser.add_argument('--step', type=int, default=2000, help='Number of steps to train')
arguments = parser.parse_args()
output_dir: Path = arguments.output
model: str = arguments.model
batch_size: int = arguments.batch
sequence_size: int = arguments.sequence
hidden_size: int = arguments.hidden
max_step: int = arguments.step
output_dir = output_dir.parent / f'modulo_{model}_b{batch_size}_s{sequence_size}_h{hidden_size}'
if not output_dir.exists():
output_dir.mkdir(parents=True)
if (output_dir / 'train').exists():
shutil.rmtree(output_dir / 'train')
writer_train = tf.summary.create_file_writer(str(output_dir / 'train'), flush_millis=20000)
network: tf.keras.Model = None
if model == 'tf-lstm':
network = TFLSTMModel(1, hidden_size, 2)
else:
print('Error : Unkown model')
sys.exit(1)
network = network.compile(
optimizer='adam',
loss=tf.losses)
torch.save(network.state_dict(), output_dir / 'model_ini.pt')
input_sample = torch.from_numpy(generate_data(2, 4)[0]).to(device)
writer_train.add_graph(network, (input_sample,))
# optimizer = torch.optim.Adam(network.parameters(), lr=1e-3, weight_decay=1e-4)
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.995)
# criterion = nn.CrossEntropyLoss()
sequence_data = np.random.uniform(4, sequence_size + 1, max_step).astype(np.int32)
sequence_data[0] = sequence_size
sequence_data_reshaped = np.reshape(np.broadcast_to(
sequence_data,
(batch_size, max_step)).transpose((1, 0)), (batch_size * max_step))
dummy_label = np.zeros((batch_size * max_step), dtype=np.uint8)
DataGenerator.MAX_LENGTH = sequence_size
with BatchGenerator(sequence_data_reshaped, dummy_label, batch_size=batch_size,
pipeline=DataGenerator.pipeline, num_workers=8, shuffle=False) as batch_generator:
data_np = batch_generator.batch_data
label_np = batch_generator.batch_label
running_loss = 0.0
running_accuracy = 0.0
running_count = 0
summary_period = max(max_step // 100, 1)
np.set_printoptions(precision=2)
try:
start_time = time.time()
while batch_generator.epoch == 0:
# data_np, label_np = generate_data(batch_size, int(np.random.uniform(4, sequence_size + 1)))
data = torch.from_numpy(
data_np.transpose((1, 0, 2))[:sequence_data[batch_generator.step]]).to(device)
label = torch.from_numpy(label_np).to(device)
optimizer.zero_grad(set_to_none=True)
outputs, _states = network(data)
loss = criterion(outputs[-1], label)
running_loss += loss.item()
outputs_np = outputs[-1].detach().cpu().numpy()
running_accuracy += ((outputs_np[:, 1] > outputs_np[:, 0]).astype(np.int32) == label_np).astype(
np.float32).mean()
running_count += 1
if (batch_generator.step + 1) % summary_period == 0:
writer_train.add_scalar('metric/loss', running_loss / running_count,
global_step=batch_generator.step)
writer_train.add_scalar('metric/error', 1 - (running_accuracy / running_count),
global_step=batch_generator.step)
writer_train.add_scalar('optimizer/lr', scheduler.get_last_lr()[0],
global_step=batch_generator.step)
scheduler.step()
speed = summary_period / (time.time() - start_time)
print(f'Step {batch_generator.step}, loss: {running_loss / running_count:.03e}'
f', acc: {running_accuracy / running_count:.03e}, speed: {speed:0.3f}step/s')
start_time = time.time()
running_loss = 0.0
running_accuracy = 0.0
running_count = 0
loss.backward()
optimizer.step()
data_np, label_np = batch_generator.next_batch()
except KeyboardInterrupt:
print('\r ', end='\r')
writer_train.close()
network.eval()
running_accuracy = 0.0
running_count = 0
for _ in range(math.ceil(1000 / batch_size)):
data_np, label_np = generate_data(batch_size, int(np.random.uniform(4, sequence_size + 1)))
data = torch.from_numpy(data_np).to(device)
label = torch.from_numpy(label_np).to(device)
outputs, _states = network(data)
outputs_np = outputs[-1].detach().cpu().numpy()
running_accuracy += ((outputs_np[:, 1] > outputs_np[:, 0]).astype(np.int32) == label_np).astype(
np.float32).mean()
running_count += 1
print(f'Validation accuracy: {running_accuracy / running_count:.03f}')
test_data = [
[[1.], [0.], [0.], [1.], [0.], [0.]],
[[1.], [0.], [0.], [0.], [1.], [0.], [0.], [0.]],
[[1.], [0.], [0.], [0.], [0.], [1.], [0.], [0.], [0.]],
[[1.], [0.], [0.], [0.], [0.], [1.], [0.], [0.], [0.], [0.]],
[[0.], [1.], [0.], [0.], [0.], [0.], [0.], [1.], [0.], [0.], [0.], [0.]],
[[1.], [0.], [0.], [0.], [0.], [0.], [1.], [0.], [0.], [0.], [0.], [0.]],
[[0.], [1.], [0.], [0.], [0.], [0.], [0.], [1.], [0.], [0.], [0.], [0.], [0.]],
[[0.], [0.], [1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.], [0.]],
[[1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.]],
[[1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.],
[0.], [1.], [0.], [0.], [1.], [0.], [0.]],
[[0.], [1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.], [0.], [1.], [0.],
[0.], [1.], [0.], [0.], [1.], [0.]],
]
test_label = np.asarray([1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0], dtype=np.int32)
running_accuracy = 0.0
running_count = 0
for data, label in zip(test_data, test_label):
outputs, _states = network(
torch.from_numpy(np.expand_dims(np.asarray(data, dtype=np.float32), 1)).to(device))
outputs_np = outputs[-1].detach().cpu().numpy()
output_correct = int(outputs_np[0, 1] > outputs_np[0, 0]) == label
running_accuracy += 1.0 if output_correct else 0.0
running_count += 1
print(f'{len(data)} {np.asarray(data)[:, 0]}, label: {label}'
f', output: {int(outputs_np[0, 1] > outputs_np[0, 0])}')
print(f'Test accuracy: {running_accuracy / running_count:.03f}')
if __name__ == '__main__':
main()