Add TF1 platform, docker and README

This commit is contained in:
Corentin 2021-10-05 10:51:18 +09:00
commit dbe5490c5b
28 changed files with 655 additions and 34 deletions

View file

@ -0,0 +1,37 @@
from pathlib import Path
from typing import List, Tuple
import torch
from src.common import DataType, Op
from src.pytorch.base import TorchBase
class DenseNetwork(torch.nn.Module):
def __init__(self, input_dim: int, dtype: torch.dtype):
super().__init__()
self.dense = torch.nn.Sequential(
*[torch.nn.Linear(input_dim, input_dim, dtype=dtype) for _ in range(5)])
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
return self.dense(input_data)
class TorchNNDenseX5Bench(TorchBase):
def __init__(self, output_path: Path, data_type: DataType):
super().__init__(output_path, Op.NN_DENSE_X5, data_type)
self.tensor: torch.Tensor = None
self.tensor_result: torch.Tensor = None
self.network: torch.nn.Module = None
def pre_experiment(self, experiment_args: Tuple[int, int]):
batch_size, dimension = experiment_args
self.tensor = torch.ones((batch_size, dimension), dtype=self.dtype, device=self.device, requires_grad=False)
self.network = DenseNetwork(dimension, self.dtype).to(self.device)
self.tensor_result = self.network(self.tensor)
def experiment(self):
self.tensor_result = self.network(self.tensor)
def run(self, experiment_args: List[Tuple[int, int]], experiment_count: int):
super().run(experiment_args, experiment_count)